🌖 Ứng Dụng Deep Learning

Những khó khăn Trước khi đến bước triển khai, bạn cần đảm bảo mô hình của mình đã được huấn luyện. Để có thể sử dụng mô hình trong một ứng dụng cần theo các bước: Nạp mô hình đã qua huấn luyện vào bộ nhớ. Tiền xử lý dữ liệu Chạy các dự đoán Xử lý đầu ra của các dự đoán THX SPATIAL AUDIO. ADVANCED 7.1 SURROUND SOUND WITH SUPERIOR POSITIONAL ACCURACY, FOR ALL YOUR GAMES. What separates good sound from phenomenal audio is the ability to transport you right into the action. Nghiên cứu mô hình học sâu (deep learning) và ứng dụng trong nhận dạng chữ viết tay. Số trang: 72; Loại file: PDF; Lượt xem: 6513; Chia sẻ bởi: thanhphoquetoi. Tải tài liệu Dự báo chuỗi thời gian hiện được ứng dụng phổ biến trong nhiều lĩnh vực Với sự nở rộ của dữ liệu cùng sức mạnh tính toán trong những năm gần đây, học sâu (deep learning) đã trở thành lựa chọn hàng đầu để xây dựng các mô hình dự báo chuỗi thời gian. Nên sử dụng Machine Learning hay Deep Learning? 26 Ứng dụng Thị giác Máy Tính phổ biến nhất hiện nay; Tại sao nên chọn Python cho Lập trình Trí Tuệ Nhân Tạo? Các xu hướng Trí Tuệ Nhân Tạo hàng đầu được mong đợi vào năm 2021 Picas is free art photo editing application which uses deep neural network and artificial intelligence to automatically redraw photos to artistic effects.. The app was created by Picas.Inc, a subsidiary of IObit.It was first launched in September 2016 for Android and few weeks later, the app was featured on Google Play Store as editor's choice. On 12 September 2016, the developer launched a 6 ứng dụng Deep Learning thú vị cho NLP 1. Token hoá và phân loại văn bản (Tokenization and Text Classification). Token hoá (Tokenization) là quá trình biến mọi 2. Tạo chú thích cho hình ảnh (Generating Captions for Images). Tự động mô tả nội dung của một hình ảnh bằng cách sử 3. Nhận dạng Ứng dụng Deep Learning 1. PIFuHD: Biến ảnh 2D thành model 3D 2. Phát hiện giới tính từ khuôn mặt https://github.com/arunponnusamy/gender-detection-keras Ưu điểm: Đơn giản, dễ sử 3. Tách background ảnh động vật Enterprise Distributed Application Service (EDAS) is the core product of Alibaba Cloud's enterprise Internet architecture solutions. One of many products developed by Alibaba Cloud's middleware team, this product provides a multifunctional solution for the enterprise-level cloud computing market. Delivering enhanced stability and reliability FvAR. Mình là một người thích những công nghệ mới mà khoa học máy tính mang lại, Deep Learning là một định hướng của mình hiện tại. Nhiều người nói rằng nó khó, khô khan, rất nặng về các kiến thức toán học. Đúng là nó khó thật nhưng mình vẫn đang sống và làm việc với nó mỗi ngày bởi đó chính là niềm đam mê của mình. Các bạn hãy cùng mình tìm hiểu về Deep Learning nhé. AI - Artificial Intelligence Trí Tuệ Nhân Tạo, và cụ thể hơn là Machine Learning/Deep Learning Máy Học/Học sâu nổi lên một cách nhanh chóng, chúng được nhiều người quan tâm và tìm hiểu. Nó được ứng dụng trong kinh tế, giáo dục, y khoa cho đến những công việc nhà, giải trí hay thậm chí là trong quân sự. Deep learning đang ngày càng cho thấy một tương lai đầy hứa hẹn. 1. Deep Learning là gì? Theo wikipedia Deep learning được bắt nguồn từ thuật toán Neural network vốn xuất phát chỉ là một ngành nhỏ của machine learning. Deep Learning là một chi của ngành máy học dựa trên một tập hợp các thuật toán để cố gắng mô hình dữ liệu trừu tượng hóa ở mức cao bằng cách sử dụng nhiều lớp xử lý với cấu trúc phức tạp, hoặc bằng cách khác bao gồm nhiều biến đổi phi tuyến. Deep Learning đã giúp máy tính thực thi những việc tưởng chừng như không thể vào 15 năm trước phân loại cả ngàn vật thể khác nhau trong các bức ảnh, tự tạo chú thích cho ảnh, bắt chước giọng nói và chữ viết của con người, giao tiếp với con người, hay thậm chí cả sáng tác văn, phim, ảnh, âm nhạc. Ví dụ 1 Tại sao bạn biết một bức ảnh là ảnh con mèo hay ảnh con chó? Đối với bạn, việc định nghĩa điều này vô cùng đơn giản Ví dụ Tai mèo nhọn, mỏ chó thì dài ra, …, tuy nhiên, bạn lại rất khó khăn để biểu diễn những thứ này dưới các dòng lệnh của máy tính. Nhưng nhờ vào Deep Learning thì vấn đề đó được giải quyết một cách cụ thể. Deep learning là một phần của Machine Learning, một ngành rất rộng và nặng về toán, gồm rất nhiều thuật toán và mỗi thuật toán có ứng dụng riêng tùy vào bài toán Linear Regression Logistic Regresstion Decision Tree and Random Forest Naive Bayes Support Vector Machines K-Nearest Neighbors Principal component analysis PCA Neural network ..... 2. Vậy Deep Learning hoạt động ra sao ? Deep Learning là một phương pháp của Học máy. Nó cho phép chúng ta huấn luyện một AI có thể dự đoán được các đầu ra dựa vào một tập các đầu vào. Cả hai phương pháp có giám sát và không giám sát đều có thể sử dụng để huấn luyện. Machine Learning là quá trình dạy máy tính thực hiện một nhiệm vụ, thay vì lập trình nó làm thế nào để thực hiện nhiệm vụ đó từng bước một. Khi kết thúc đào tạo, một hệ thống Machine Learning sẽ có thể đưa ra dự đoán chính xác khi được cung cấp dữ liệu. Như ở ví dụ 1 mình đã nêu ở trên thì chúng ta hoàn toàn có thể giải quyết chúng nhờ vào Deep Learning. Để dạy máy tính nhận diện hình ảnh một con mèo thì chúng ta sẽ lập trình ra nhiều lớp trong mạng thần kinh nhân tạo, mỗi lớp có khả năng xác định một đặc điểm cụ thể của con mèo như râu, vuốt, chân,… rồi cho máy xem hàng ngàn bức ảnh mèo chỉ ra rằng “Đây là con mèo” cùng hàng ngàn bức ảnh không phải mèo chỉ ra rằng "đây không phải mèo". Ví dụ 2 Chúng ta muốn dạy xe tự động cách qua đường và xử lí các tình huống khi tham gia giao thông. Chẳng hạn nếu muốn dạy xe hơi cách băng qua đường, theo cách truyền thống bạn sẽ đưa cho nó một loạt quy tắc hướng dẫn cách nhìn trái phải hay đợi xe và người đi qua,… Thế nhưng nếu trong Machine Learning nói chung và Deep Learning nói riêng, bạn sẽ cho máy tính xem video quay cảnh người ta băng qua đường an toàn và video quay cảnh ai đó bị xe đâm để nó tự học theo. 3. Khi nào thì bạn nên sử dụng Deep Learning Khi dữ liệu của bạn phần lớn không có cấu trúc và bạn có rất nhiều dữ liệu. Các thuật toán Deep Learning có thể lấy dữ liệu lộn xộn và không có nhãn rộng rãi – chẳng hạn như video, hình ảnh, bản ghi âm thanh và văn bản – và áp đặt đủ thứ tự cho dữ liệu đó để đưa ra dự đoán hữu ích, xây dựng hệ thống phân cấp các tính năng tạo nên con chó hoặc con mèo một hình ảnh hoặc âm thanh tạo thành một từ trong lời nói. Deep Learning ngày càng được nhiều người biết đến và nó những bước đột phá vô cùng to lớn. Những đột phá to lớn này là việc thiết kế ra những trợ lý ảo bằng giọng nói, các hệ thống xe tự lái hay sử dụng vào thiết kế đồ họa, phân tích tình hình giao thông của thành phố, cho đến phát triển các nguyên liệu mới giúp robot thấu hiểu thế giới xung quanh hơn. Xu hướng về Robot và Deep Learning đang được nhiều công ty công nghệ lớn chú trọng đầu tư và phát triển. Việc Deep Learning phát triển tạo nên sự chủ động trong mọi việc, con người dần có thể điều khiển cuộc sống của mình. Cùng điểm qua các hình thức mà việc học sâu mang lại. Ứng dụng xe tự động Trợ lý ảo Siri/Alexa,... Mô phỏng và nhận diện hình ảnh Một trong những ứng dụng của chúng ở mảng này mà ta bắt gặp nhiều nhất là Facebook, nó có thể tự động gắn thẻ chính bạn và bạn bè của bạn. 4. Lộ trình học Deep Learning cho người mới bắt đầu Yêu cầu cơ bản cho người muốn học về Deep Learning Kiến thức về toán đại số tuyến tính, giải tích, xác suất thống kê, lý thuyết đồ thị Kiến thức về lập trình Hàm, vòng lặp. Cập nhật những kiến thức mới liên tục. Sau đây là lộ trình mà mình đang hướng tới Python cơ bản Cách dùng array, matrix, numpy trong python Các bài toán trong Machine Learning và Deep Learning Linear Regression, SVM, Perceptron Learning, biết được đầu vào, đầu ra. Lúc nào dùng classification? Lúc nào dùng regression? Học dùng thư viện sklearn. Mình nghĩ chỉ cần với sklearn thì bạn có thể đã làm được 70-80% các bài toán của ML rồi. Trừ khi data quá lớn thì có thể nghĩ đến DL. Mình suggest thêm 1 nguồn mình thấy khá đầy đủ trên Kaggle Kaggle Học model DL như CNN, RNN, LSTM. Cái này thì nhiều, mình nghĩ bạn có thể tìm đến các khóa của Stanford về Computer Vision hay NLP đều có. Framework thì có thể lựa Tensorflow, Keras trên nền Tensorflow hoặc Pytorch đều được. Học xử lý data bằng Pandas và analysis bằng Matplot hay Seaborn. Xong rồi thì tìm bài toán hay challenge nào đó làm thử thôi. Quan trọng là học đi đôi với hành. Làm nhiều sẽ quen tay. Tổng kết Deep Learning cực kỳ mạnh mẽ nhưng nó khó, những vấn đề mình nêu trong bài viết này chỉ là phần ngọn mà thôi. Trên đây là những tổng quan về Deep Learning mà những gì mình học hỏi được. Còn rất nhiều khái niệm, các ứng dụng thực tiễn, các thuật toán chưa được nhắc tới trong bài viết này. Mình không thể trình bày tất cả trong một bài viết. Hi vọng với bài viết ở phần tiếp theo sẽ giúp các bạn phần nào hiểu rõ hơn về Deep Learning thông qua các thuật toán. Deep learning là gì? Trong vài năm qua, deep learning đã được áp dụng cho hàng trăm vấn đề mang lại giải pháp hiệu quả cho doanh nghiệp. Trong bài viết hôm nay, chúng ta hãy cùng tìm hiểu deep learning đã phát triển và ứng dụng trong đời sống như thế nào. Mục Lục1 Khái niệm Deep learning là gì?2 Phương thức hoạt động của deep learning3 Ứng dụng của deep learning trong đời Trợ lý Ứng dụng xe tự Mô phỏng nhận diện hình Tính năng dịch tự động Khái niệm Deep learning là gì? Deep learning là định nghĩa của một số thuật toán học máy móc phức tạp. Để hiểu rõ hơn về khái niệm deep learning, chúng ta hãy cùng tìm hiểu về học nông và học sâu của máy tính. Deep learning có vai trò như thế nào? Trong thực tế, Deep Learning bao gồm nhiều lớp ẩn trong một mạng lưới thần kinh và thuộc lớp sau cùng. Việc đi qua nhiều số lượng lớp và mạng phức tạp được cho là độ sâu. Ngày nay, sự thay đổi lớn nhất trong học tập sâu là độ sâu của mạng lưới thần kinh đã phát triển từ một vài lớp đến hàng trăm trong số chúng. Độ sâu hơn có nghĩa là khả năng nhận dạng các mẫu lớn hơn, với nguồn thông tin lớn hơn giúp tăng khả năng tiếp nhận các đối tượng trở nên rộng hơn, chi tiết hơn. >>> Tuyển dụng Javascript Phương thức hoạt động của deep learning Deep learning hoạt động ra sao Cách thức hoạt động của thuật toán Deep Learning diễn ra như sau Các dòng thông tin sẽ được trải qua nhiều lớp cho đến lớp sau cùng. Lấy quy trình học của con người làm ví dụ cụ thể. Qua các lớp đầu tiên sẽ tập trung vào việc học các khái niệm cụ thể hơn trong khi các lớp sâu hơn sẽ sử dụng thông tin đã học để nghiên cứu và phân tích sâu hơn trong các khái niệm trừu tượng . Quy trình xây dựng biểu diễn dữ liệu này được gọi là trích xuất tính năng. Kiến trúc phức tạp của việc học sâu được cung cấp từ mạng lưới thần kinh sâu với khả năng thực hiện trích xuất tính năng tự động. Ngược lại, trong học máy thông thường còn gọi là học nông, nhiệm vụ này được thực hiện khi truy xuất các thuật toán cụ thể. >>> Tìm việc làm nhanh tại freeC! Xem ngay! Ứng dụng của deep learning trong đời sống Việc Deep Learning phát triển tạo nên sự chủ động trong mọi việc, con người dần có thể điều khiển cuộc sống của mình. Cùng điểm qua các hình thức mà việc học sâu mang lại. Deep learning có những ứng dụng gì trong cuộc sống Trợ lý ảo Ứng dụng phổ biến nhất của Deep Learning ngày nay là trợ lý ảo từ Alexa đến Siri, Google Assistant. Mỗi tương tác với các trợ lý này cung cấp cho họ cơ hội tìm hiểu thêm về giọng nói và ngữ điệu của bạn, từ đó cung cấp cho bạn trải nghiệm tương tác như phiên bản thứ 2 của con người. Trợ lý ảo sử dụng học tập sâu để biết thêm về các chủ đề của họ, từ sở thích ăn tối của bạn đến các điểm truy cập nhiều nhất hoặc các bài hát yêu thích của bạn. Họ học cách hiểu các mệnh lệnh của bạn bằng cách đánh giá ngôn ngữ tự nhiên của con người để thực hiện chúng. Ngoài ra các ứng dụng này có khả năng đặc biệt khác là dịch bài phát biểu của bạn thành văn bản, ghi chú cho bạn và đặt lịch hẹn. Có thể nói đây chính là một trợ lý ảo thực sự của bạn, từ việc nhắc nhở cho đến tự động trả lời các cuộc gọi cụ thể của bạn để phối hợp các nhiệm vụ giữa bạn và các thành viên trong nhóm. Với các ứng dụng học sâu như tạo Ứng dụng xe tự động Phòng thí nghiệm nghiên cứu về trí tuệ nhân tạo UBER tại Pittsburg đã tích hợp thêm các tính năng cho chiếc xe thông thường bằng việc tuỳ chọn giao thức ăn cùng với trải nghiệm xe tự động lái. Vấn đề trong việc phát triển hình thức xe hơi tự chủ chính là các nhà phân tích phải xây dựng nên các kịch bản có thể xảy ra trong cuộc sống và lập trình việc xử lý các tình huống tích hợp trong chiếc xe hơi. Bên cạnh đó chu kỳ kiểm tra và triển khai thường xuyên các thuật toán học sâu để đảm bảo sự an toàn xảy ra với nhiều tình huống và hàng ngàn kịch bản khác nhau trong đời sống. Đó chính là thông qua các dữ liệu từ máy ảnh, từ bản đồ địa lý, các yếu tố môi trường bên ngoài từ đó tích hợp các cảm biến giúp cho thiết bị có thể xác định được các phương hướng, các biển báo, các tuyến đường phù hợp. Ngoài ra, còn phát triển các tính năng cảm biến xác định tuyến đường nào thuận tiện nhất để di chuyển trong ngày giúp tránh được tình trạng giao thông gây tắc nghẽn đường. >>>> Tuyển dụng Phát triển phần mềm Mô phỏng nhận diện hình ảnh Chắc hẳn, chúng ta đều đã từng thấy máy tính tự động nhận diện và phân loại các hình ảnh của bạn. Ví dụ Facebook có thể tự động gắn thẻ chính bạn và bạn bè của bạn. Tương tự, Google Photos có thể tự động gắn nhãn ảnh của bạn để tìm kiếm dễ dàng hơn. Và với Deep Learning bạn có thể dễ dàng tìm và phân loại các hình ảnh theo ngày, sự kiện mà không phải dùng thao tác thủ công mất thời gian. Tính năng dịch tự động Ứng dụng Google Translate giờ đây có thể tự động dịch hình ảnh với văn bản theo thời gian thực sang ngôn ngữ bạn chọn. Chỉ cần giữ máy ảnh trên đầu của đối tượng và điện thoại của bạn chạy một mạng học sâu để đọc hình ảnh, OCR nó tức là chuyển đổi nó thành văn bản và sau đó dịch nó. Ngôn ngữ sẽ dần dần trở thành không có rào cản và chúng ta sẽ có thể giao tiếp với những người khác trên toàn cầu. Hy vọng bài viết trên giúp bạn hiểu deep learning là gì cũng như ứng dụng của chúng để thực hành thành công. Nguồn codelearn Bài viết liên quan Tìm hiểu ATS là gì? Những phần mềm ATS phổ biến hiện nayMẫu mô tả công việc Data Analyst chuẩnMô tả công việc kỹ sư AI chi tiết và đầy đủ nhất Deep Learning là gì? Deep Learning là một tập hợp con của Machine Learning, bản thân nó nằm trong lĩnh vực trí tuệ nhân khác biệt giữa AI, Machine Learning và Deep Learning là gì? Trí tuệ nhân tạo là nghiên cứu về cách chế tạo những cỗ máy có khả năng thực hiện các nhiệm vụ thường đòi hỏi trí thông minh của con Intelligence bao gồm nhiều lĩnh vực nghiên cứu, từ thuật toán di truyền đến các hệ thống chuyên gia và cung cấp phạm vi cho các lập luận về những gì cấu thành lĩnh vực nghiên cứu AI, Machine Learning đã đạt được thành công đáng kể trong những năm gần đây – cho phép máy tính vượt qua hoặc tiến gần đến việc kết hợp hiệu suất của con người trong các lĩnh vực từ nhận dạng khuôn mặt đến nhận dạng giọng nói và ngôn Learning là quá trình dạy máy tính thực hiện một nhiệm vụ, thay vì lập trình nó làm thế nào để thực hiện nhiệm vụ đó từng bước kết thúc đào tạo, một hệ thống Machine Learning sẽ có thể đưa ra dự đoán chính xác khi được cung cấp dữ đó nghe có vẻ khô khan, nhưng những dự đoán đó có thể trả lời liệu một miếng trái cây trong ảnh là chuối hay táo, nếu một người đang băng qua trước một chiếc xe tự lái, cho dù việc sử dụng sách từ trong câu liên quan đến bìa mềm hoặc đặt phòng khách sạn, cho dù email là thư rác hay nhận dạng giọng nói đủ chính xác để tạo chú thích cho video Learning thường được chia thành học có giám sát, trong đó máy tính học bằng ví dụ từ dữ liệu được gắn nhãn và học không giám sát, trong đó các máy tính nhóm các dữ liệu tương tự và xác định chính xác sự bất Learning là một tập hợp con của Machine Learning, có khả năng khác biệt ở một số khía cạnh quan trọng so với Machine Learning nông truyền thống, cho phép máy tính giải quyết một loạt các vấn đề phức tạp không thể giải quyết ví dụ về một nhiệm vụ Machine Learning đơn giản, nông cạn có thể dự đoán doanh số bán kem sẽ thay đổi như thế nào dựa trên nhiệt độ ngoài trời. Việc đưa ra dự đoán chỉ sử dụng một vài tính năng dữ liệu theo cách này là tương đối đơn giản và có thể được thực hiện bằng cách sử dụng một kỹ thuật Machine Learning gọi là hồi quy tuyến tính với độ dốc giảm đề là hàng loạt vấn đề trong thế giới thực không phù hợp với những mô hình đơn giản như vậy. Một ví dụ về một trong những vấn đề thực tế phức tạp này là nhận ra các số viết giải quyết vấn đề này, máy tính cần phải có khả năng đối phó với sự đa dạng lớn trong cách thức trình bày dữ liệu. Mỗi chữ số từ 0 đến 9 có thể được viết theo vô số cách kích thước và hình dạng chính xác của mỗi chữ số viết tay có thể rất khác nhau tùy thuộc vào người viết và trong hoàn cảnh phó với sự biến đổi của các tính năng này và sự lộn xộn tương tác lớn hơn giữa chúng, là nơi học tập sâu và mạng lưới thần kinh sâu trở nên hữu lưới thần kinh là các mô hình toán học có cấu trúc được lấy cảm hứng lỏng lẻo từ bộ nơ-ron trong mạng nơ-ron là một hàm toán học lấy dữ liệu thông qua đầu vào, biến đổi dữ liệu đó thành dạng dễ điều chỉnh hơn và sau đó phun ra thông qua đầu ra. Bạn có thể nghĩ về các nơ-ron trong một mạng lưới thần kinh như được sắp xếp theo lớp, như hình dưới ảnh Nick Heath / ZDNetTất cả các mạng thần kinh đều có một lớp đầu vào, trong đó dữ liệu ban đầu được đưa vào và một lớp đầu ra, tạo ra dự đoán cuối cùng. Nhưng trong một mạng lưới thần kinh sâu, sẽ có nhiều “lớp tế bào” ẩn giữa các lớp đầu vào và đầu ra, mỗi lớp cho dữ liệu vào nhau. Do đó, thuật ngữ “Deep” trong “Deep Learning” và “mạng lưới thần kinh sâu”, nó liên quan đến số lượng lớn các lớp ẩn – thường lớn hơn ba – tại trung tâm của các mạng thần kinh đồ đơn giản hóa ở trên hy vọng sẽ giúp cung cấp một ý tưởng về cách cấu trúc một mạng lưới thần kinh đơn giản. Trong ví dụ này, mạng đã được đào tạo để nhận ra các số liệu viết tay, chẳng hạn như số 2 được hiển thị ở đây, với lớp đầu vào được cung cấp các giá trị đại diện cho các pixel tạo thành hình ảnh của một chữ số viết tay và lớp đầu ra dự đoán số viết tay nào đã được hiển thị trong hình sơ đồ trên, mỗi vòng tròn đại diện cho một nơ-ron trong mạng, với các nơ-ron được tổ chức thành các lớp thẳng bạn có thể thấy, mỗi nơ-ron được liên kết với mọi nơ-ron ở lớp sau, thể hiện thực tế là mỗi nơ-ron tạo ra một giá trị vào mỗi nơ-ron ở lớp tiếp theo. Màu sắc của các liên kết trong sơ đồ cũng khác nhau. Các màu khác nhau, đen và đỏ, thể hiện tầm quan trọng của các liên kết giữa các nơ-ron. Các liên kết màu đỏ là những liên kết có ý nghĩa lớn hơn, có nghĩa là chúng sẽ khuếch đại giá trị khi nó đi qua giữa các lớp. Đổi lại, sự khuếch đại giá trị này có thể giúp kích hoạt tế bào thần kinh mà giá trị đang được đưa nơ-ron có thể được cho là đã được kích hoạt khi tổng các giá trị được đưa vào nơ-ron này vượt qua ngưỡng đã đặt. Trong sơ đồ, các tế bào thần kinh được kích hoạt có màu đỏ. Kích hoạt này có nghĩa là khác nhau theo lớp. Trong “Lớp ẩn 1” được hiển thị trong sơ đồ, một nơ ron kích hoạt có thể có nghĩa là hình ảnh của hình viết tay chứa một tổ hợp pixel nhất định giống với đường nằm ngang ở đầu số viết tay 7. Theo cách này, “Lớp ẩn 1 “Có thể phát hiện nhiều đường và đường cong câu chuyện cuối cùng sẽ kết hợp với nhau thành hình viết tay đầy mạng lưới thần kinh thực tế có thể sẽ có cả hai lớp ẩn và nhiều nơ-ron hơn trong mỗi lớp. Ví dụ “Lớp ẩn 2” có thể được cung cấp các đường và đường cong nhỏ được xác định bởi “Lớp ẩn 1” và phát hiện cách chúng kết hợp để tạo thành các hình dạng có thể nhận biết, tạo thành các chữ số, như toàn bộ vòng lặp dưới cùng của sáu. Bằng cách cung cấp dữ liệu chuyển tiếp giữa các lớp theo cách này, mỗi lớp ẩn tiếp theo xử lý các tính năng ngày càng cao đã đề cập, tế bào thần kinh được kích hoạt trong lớp đầu ra của sơ đồ có một ý nghĩa khác. Trong trường hợp này, tế bào thần kinh được kích hoạt tương ứng với số lượng mạng thần kinh ước tính nó được hiển thị trong hình ảnh của một chữ số viết tay mà nó được cung cấp làm đầu bạn có thể thấy, đầu ra của một lớp là đầu vào của lớp tiếp theo trong mạng, với dữ liệu chảy qua mạng từ đầu vào đến đầu làm thế nào để nhiều lớp ẩn này cho phép một máy tính xác định bản chất của một chữ số viết tay? Nhiều lớp tế bào thần kinh này về cơ bản cung cấp một cách để mạng lưới thần kinh xây dựng một hệ thống phân cấp thô gồm các tính năng khác nhau tạo nên chữ số viết tay trong câu hỏi. Chẳng hạn, nếu đầu vào là một mảng các giá trị đại diện cho các pixel riêng lẻ trong hình ảnh của hình viết tay, lớp tiếp theo có thể kết hợp các pixel này thành các đường và hình dạng, lớp tiếp theo kết hợp các hình dạng đó thành các đặc điểm riêng biệt như các vòng lặp trong 8 hoặc tam giác trên trong 4, và như vậy. Bằng cách xây dựng một bức tranh về các tính năng này, các mạng thần kinh hiện đại có thể xác định – với độ chính xác rất cao – con số tương ứng với một chữ số viết tay. Tương tự, các loại mạng thần kinh sâu khác nhau có thể được đào tạo để nhận diện khuôn mặt trong hình ảnh hoặc để phiên âm lời nói bằng văn trình xây dựng hệ thống phân cấp ngày càng phức tạp này của các tính năng của số viết tay không có gì ngoài các pixel được mạng học. Quá trình học tập được thực hiện bằng cách mạng có thể thay đổi tầm quan trọng của các liên kết giữa các nơ-ron trong mỗi lớp. Mỗi liên kết có một giá trị đính kèm được gọi là trọng số, nó sẽ sửa đổi giá trị được tạo ra bởi một nơron khi nó truyền từ lớp này sang lớp kế tiếp. Bằng cách thay đổi giá trị của các trọng số này và một giá trị liên quan được gọi là sai lệch, có thể nhấn mạnh hoặc làm giảm tầm quan trọng của các liên kết giữa các nơ-ron trong dụ, trong trường hợp mô hình nhận dạng chữ số viết tay, các trọng số này có thể được sửa đổi để nhấn mạnh tầm quan trọng của một nhóm pixel cụ thể tạo thành một dòng hoặc một cặp các đường giao nhau tạo thành minh họa về cấu trúc của một mạng lưới thần kinh và cách đào tạo hoạt hình học được các liên kết giữa các nơ-ron rất quan trọng trong việc đưa ra dự đoán thành công trong quá trình đào tạo. Ở mỗi bước trong quá trình đào tạo, mạng sẽ sử dụng một hàm toán học để xác định mức độ chính xác của dự đoán mới nhất của nó so với dự kiến. Hàm này tạo ra một loạt các giá trị lỗi, do đó hệ thống có thể sử dụng để tính toán cách mô hình nên cập nhật giá trị của các trọng số được gắn vào mỗi liên kết, với mục đích cuối cùng là cải thiện độ chính xác của các dự đoán của mạng. Mức độ mà các giá trị này sẽ được thay đổi được tính bởi một chức năng tối ưu hóa, chẳng hạn như giảm độ dốc và những thay đổi đó được đẩy lùi trên toàn mạng vào cuối mỗi chu kỳ đào tạo trong một bước gọi là lan truyền qua nhiều, rất nhiều chu kỳ đào tạo và với sự trợ giúp của việc điều chỉnh tham số thủ công không thường xuyên, mạng sẽ tiếp tục nue để tạo dự đoán tốt hơn và tốt hơn cho đến khi nó đạt gần với độ chính xác cao nhất. Tại thời điểm này, ví dụ, khi các chữ số viết tay có thể được nhận ra với độ chính xác hơn 95%, mô hình Deep Learning có thể nói là đã được đào cơ bản, Deep Learning cho phép Machine Learning giải quyết một loạt các vấn đề phức tạp mới – chẳng hạn như nhận dạng hình ảnh, ngôn ngữ và lời nói – bằng cách cho phép máy móc tìm hiểu cách các tính năng trong dữ liệu kết hợp thành các dạng trừu tượng ngày càng cao hơn. Ví dụ trong nhận dạng khuôn mặt, cách các pixel trong hình ảnh tạo ra các đường và hình dạng, cách các đường và hình dạng đó tạo ra các đặc điểm khuôn mặt và cách các đặc điểm khuôn mặt này được sắp xếp thành một khuôn sao nó được gọi là Deep Learning?Như đã đề cập, độ sâu đề cập đến số lượng các lớp ẩn, thường là hơn ba, được sử dụng trong các mạng lưới thần kinh thế nào mà Deep Learning được sử dụng?Đối với nhiều nhiệm vụ, để nhận biết và tạo hình ảnh, lời nói và ngôn ngữ và kết hợp với học tăng cường để phù hợp với hiệu suất của con người trong các trò chơi từ cổ đại, như Go, đến hiện đại, như Dota 2 và Quake thống học tập sâu là một nền tảng của các dịch vụ trực tuyến hiện đại. Các hệ thống như vậy được Amazon sử dụng để hiểu những gì bạn nói – cả lời nói và ngôn ngữ bạn sử dụng – với trợ lý ảo Alexa hoặc Google để dịch văn bản khi bạn truy cập trang web tiếng nước tìm kiếm của Google sử dụng nhiều hệ thống Machine Learning, để hiểu ngôn ngữ trong truy vấn của bạn thông qua việc cá nhân hóa kết quả của bạn, vì vậy những người đam mê câu cá tìm kiếm “bass” không bị ngập trong kết quả về ngoài những biểu hiện rất rõ ràng về máy móc và học tập sâu, các hệ thống như vậy đang bắt đầu tìm thấy một ứng dụng trong mọi ngành công nghiệp. Những ứng dụng này bao gồm tầm nhìn máy tính cho xe không người lái, máy bay không người lái và robot giao hàng; nhận dạng và tổng hợp ngôn ngữ và ngôn ngữ cho chatbot và robot dịch vụ; nhận dạng khuôn mặt để giám sát ở các nước như Trung Quốc; giúp các bác sĩ X quang chọn ra các khối u trong tia X, giúp các nhà nghiên cứu phát hiện ra các chuỗi di truyền liên quan đến các bệnh và xác định các phân tử có thể dẫn đến các loại thuốc hiệu quả hơn trong chăm sóc sức khỏe; cho phép bảo trì dự đoán về cơ sở hạ tầng bằng cách phân tích dữ liệu cảm biến IoT; củng cố tầm nhìn máy tính giúp siêu thị Amazon Go không thu tiền có thể cung cấp phiên âm và dịch thuật chính xác hợp lý cho các cuộc họp kinh doanh – danh sách này vẫn tiếp Cửa hàng Amazon Go dựa vào nhận dạng hình ảnh được hỗ trợ bằng cách tìm hiểu sâu để phát hiện những gì người mua hàng nào thì bạn nên sử dụng Deep LearningKhi dữ liệu của bạn phần lớn không có cấu trúc và bạn có rất nhiều dữ thuật toán Deep Learning có thể lấy dữ liệu lộn xộn và không có nhãn rộng rãi – chẳng hạn như video, hình ảnh, bản ghi âm thanh và văn bản – và áp đặt đủ thứ tự cho dữ liệu đó để đưa ra dự đoán hữu ích, xây dựng hệ thống phân cấp các tính năng tạo nên con chó hoặc con mèo một hình ảnh hoặc âm thanh tạo thành một từ trong lời bùng nổ của IoT sẽ thay đổi cách phân tích dữ liệu Xin lỗi, AI nói chung vẫn còn rất xa 10 công nghệ này rất có thể sẽ giúp cứu hành tinh Trái đất Cuộc chiến của Google về những kẻ thù sâu sắc Khi cuộc bầu cử hiện ra, nó chia sẻ hàng tấn video giả mạo AIDeep Learning hay giải quyết những vấn đề như thế nào?Như đã đề cập, các mạng nơ-ron sâu vượt trội trong việc đưa ra dự đoán dựa trên dữ liệu phần lớn không có cấu trúc. Điều đó có nghĩa là họ cung cấp hiệu suất tốt nhất trong các lĩnh vực như nhận dạng giọng nói và hình ảnh, nơi họ làm việc với dữ liệu lộn xộn như ghi âm lời nói và hình ta có nên lúc nào cũng sử dụng Deep Learning thay vì Machine Learning?Không, bởi vì học sâu có thể rất tốn kém từ quan điểm tính với các tác vụ không tầm thường, việc đào tạo một mạng lưới thần kinh sâu thường sẽ yêu cầu xử lý một lượng lớn dữ liệu bằng cách sử dụng các cụm GPU cao cấp trong nhiều, nhiều các GPU hàng đầu có thể tốn hàng ngàn đô la để mua hoặc lên tới 5 đô la mỗi giờ để thuê trên đám mây, thật không khôn ngoan khi nhảy thẳng vào tìm hiểu vấn đề có thể được giải quyết bằng thuật toán Machine Learning đơn giản hơn như suy luận Bayes hoặc hồi quy tuyến tính, thì không yêu cầu hệ thống phải vật lộn với sự kết hợp phức tạp của các tính năng phân cấp trong dữ liệu, thì các tùy chọn yêu cầu tính toán ít hơn này sẽ là sự lựa chọn tốt hơnDeep Learning cũng có thể không phải là lựa chọn tốt nhất để đưa ra dự đoán dựa trên dữ liệu. Ví dụ nếu tập dữ liệu nhỏ thì đôi khi các mô hình Machine Learning tuyến tính đơn giản có thể mang lại kết quả chính xác hơn – mặc dù một số chuyên gia về Machine Learning cho rằng mạng thần kinh Deep Learning được đào tạo đúng cách vẫn có thể hoạt động tốt với một lượng nhỏ dữ và sức khỏe Sử dụng Machine Learning để hiểu hệ thống miễnLearning dịch của con người HPE sẽ là kết thúc có hậu của MapR chứ? Microsoft Nếu PC Windows 10 của bạn được AI chọn để cập nhật, sự cố sẽ ít xảy ra hơn Các nhà nghiên cứu của Nvidia sử dụng học tập sâu để tạo ra các video chuyển động siêu chậmMột trong những nhược điểm của Deep Learning là gì?Một trong những nhược điểm lớn là lượng dữ liệu họ cần đào tạo, gần đây Facebook tuyên bố họ đã sử dụng một tỷ hình ảnh để đạt được hiệu suất phá kỷ lục bởi một hệ thống nhận dạng hình ảnh. Khi các bộ dữ liệu lớn như vậy, các hệ thống đào tạo cũng yêu cầu quyền truy cập vào một lượng lớn sức mạnh tính toán phân tán. Đây là một vấn đề khác của học tập sâu, chi phí đào tạo. Do kích thước của bộ dữ liệu và số chu kỳ đào tạo phải được chạy, đào tạo thường yêu cầu quyền truy cập vào phần cứng máy tính mạnh mẽ và đắt tiền, điển hình là GPU cao cấp hoặc mảng GPU. Cho dù bạn đang xây dựng hệ thống của riêng mình hoặc thuê phần cứng từ nền tảng đám mây, không có tùy chọn nào có thể lưới thần kinh sâu cũng khó đào tạo, do cái được gọi là vấn đề độ dốc biến mất, có thể làm xấu đi nhiều lớp hơn trong mạng lưới thần kinh. Khi nhiều lớp được thêm vào, vấn đề độ dốc biến mất có thể dẫn đến việc mất một thời gian dài không thể để đào tạo một mạng lưới thần kinh đến một mức độ chính xác tốt, vì sự cải thiện giữa mỗi chu kỳ đào tạo là rất ít. Vấn đề không ảnh hưởng đến tất cả các mạng thần kinh nhiều lớp, thay vào đó là các mạng sử dụng phương pháp học tập dựa trên độ dốc. Điều đó nói rằng vấn đề này có thể được giải quyết theo nhiều cách khác nhau, bằng cách chọn một chức năng kích hoạt phù hợp hoặc bằng cách đào tạo một hệ thống sử dụng GPU hạng Learning giúp Google theo dõi nguy cơ đau tim Tương lai của tương lai Spark, hiểu biết dữ liệu lớn, phát trực tuyến và Deep Learning trong đám mâyTại sao rất khó để đào tạo mạng lưới thần kinh Deep Learning?Như đã đề cập, mạng lưới thần kinh sâu rất khó đào tạo vì số lượng các lớp trong mạng lưới thần kinh. Số lượng các lớp và liên kết giữa các nơ-ron trong mạng sao cho khó có thể tính toán các điều chỉnh cần thực hiện ở mỗi bước trong quy trình đào tạo – một vấn đề được gọi là vấn đề độ dốc biến vấn đề lớn khác là số lượng lớn dữ liệu cần thiết để đào tạo mạng lưới thần kinh học tập sâu, với các tập huấn luyện thường đo kích thước những kỹ thuật Deep Learning nào?Có nhiều loại mạng lưới thần kinh sâu, với các cấu trúc phù hợp với các loại nhiệm vụ khác nhau. Ví dụ Mạng thần kinh chuyển đổi CNN thường được sử dụng cho các tác vụ thị giác máy tính, trong khi Mạng thần kinh tái phát RNN thường được sử dụng để xử lý ngôn ngữ. Mỗi lớp có các chuyên môn riêng, trong CNN, các lớp ban đầu được chuyên biệt để trích xuất các tính năng riêng biệt từ hình ảnh, sau đó được đưa vào mạng thần kinh thông thường hơn để cho phép hình ảnh được phân loại. Trong khi đó, RNN khác với mạng nơ ron chuyển tiếp thức ăn truyền thống ở chỗ chúng không chỉ cung cấp dữ liệu từ lớp thần kinh này sang lớp thần kinh tiếp theo mà còn có các vòng phản hồi tích hợp, trong đó đầu ra dữ liệu từ một lớp được đưa trở lại lớp trước nó – cho mạng một dạng bộ nhớ. Có một dạng RNN chuyên biệt hơn bao gồm cái được gọi là ô nhớ và được điều chỉnh để xử lý dữ liệu có độ trễ giữa các đầu mạng thần kinh cơ bản nhất là mạng perceptron nhiều lớp, loại được thảo luận ở trên trong ví dụ về các số liệu viết tay, trong đó dữ liệu được đưa về phía trước giữa các lớp tế bào thần kinh. Mỗi nơ-ron thường sẽ biến đổi các giá trị mà chúng được cung cấp bằng cách sử dụng chức năng kích hoạt, thay đổi các giá trị đó thành một dạng, ở cuối chu kỳ đào tạo, sẽ cho phép mạng tính toán được bao xa để đưa ra dự đoán chính một số lượng lớn các loại mạng thần kinh sâu khác nhau. Không có một mạng nào tốt hơn mạng kia, chúng chỉ phù hợp hơn để học các loại nhiệm vụ cụ đây, các mạng đối nghịch chung Gans đang mở rộng những gì có thể để sử dụng các mạng thần kinh. Trong kiến ​​trúc này, hai mạng thần kinh chiến đấu, mạng máy phát điện cố gắng tạo ra dữ liệu “giả” thuyết phục và người phân biệt đối xử cố gắng phân biệt sự khác biệt giữa dữ liệu giả và dữ liệu thực. Với mỗi chu kỳ đào tạo, máy phát điện trở nên tốt hơn trong việc tạo ra dữ liệu giả và người phân biệt đối xử có được con mắt sắc nét hơn để phát hiện ra những giả mạo đó. Bằng cách kết hợp hai mạng với nhau trong quá trình đào tạo, cả hai có thể đạt được hiệu suất tốt hơn. GAN đã được sử dụng để thực hiện một số nhiệm vụ quan có thể tìm hiểu thêm về AI, Machine Learning, Deep Learning tại đây.

ứng dụng deep learning